The value of tanx∫1/etdt1+t2+cotx∫1/edtt(1+t2), where x∈(π6,π3), is
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1 Let f(x)=tanx∫1/etdt1+t2+cotx∫1/edtt(1+t2) ⇒f′(x)=tanx1+tan2xsec2x+1cotx(1+cot2x)(−cosec2x) ⇒f′(x)=tanx−tanx=0 ⇒f(x) is a constant function.
Put x=π4 ∴f(π4)=1∫1etdt(1+t2)+1∫1edtt(1+t2) ⇒f(x)=1∫1e1tdt=[ln|t|]11/e=1