The correct option is A 200√2
Let I=100π∫0√1−cos2x dx
⇒I=100π∫0√2sin2x dx =√2100π∫0|sinx| dx
Using the property:
a+nT∫af(x) dx=nT∫0f(x) dx[T is the period of f(x)]
Here, the period of |sinx| is π, so
I=100√2π∫0|sinx| dx =100√2π∫0sinx dx =100√2(−cosx)π0∴I=200√2