The correct option is D 212
Let I=16π/3∫0|sinx|dx
⇒I=5π∫0|sinx|dx+5π+π/3∫5π|sinx|dx
Using the properties:
(i). nT∫0f(x) dx=nT∫0f(x) dx(ii). a+nT∫nTf(x) dx=a∫0f(x) dx[T is the period of f(x)]
Now,
I=5π∫0sinx dx+π/3∫0sinx dx =−5(cosx)π0−(cosx)π/30∴I=10+12=212