The correct option is C 0
As we know that, (1+tanA)(1+tanB)=2
when A+B=π4
Here, A=π3−x,B=x−π12
⇒A+B=π3−x+x−π12=4π−π12=3π12=π4
∴2021π∫−2021π{x2021(1+tan(π3−x))(1+tan(x−π12))}dx
=2021π∫−2021πx2021(2)dx
We know that,
a∫−af(x) dx=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩2a∫0f(x) dx, if f(x) is even0, if f(x) is odd
Here, f(x)=2⋅x2021
⇒f(−x)=−2x2021
⇒f(−x)=−f(x), thus f(x) is odd.
⇒2021π∫−2021π2⋅x2021dx=0