The correct option is B 24π
I=4∫−4(x3secx+3)√16−x2 dx =4∫−4x3secx√16−x2 dx+34∫−4√16−x2 dx =4∫−4f(x) dx+34∫−4g(x) dx
∵f(x) is an odd function.
∴4∫−4f(x) dx=0
And g(x) is half the area of circle x2+y2=16
∴4∫−4g(x) dx=π×422=8π⇒I=0+3×8π=24π
Alternate solution:
34∫−4√16−x2 dx=3[x2√16−x2+162sin−1x4]4−4=24π