wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

The value of π2π2(1+sin2x1+πsinx)dx is

A
3π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 3π4
I=π2π2(1+sin2x1+πsinx)dx(i)
Applying property of definite integrals
baf(x)dx=baf(a+bx)dx
I=π2π2(1+sin2x1+πsinx)dx
I=π2π2πsinx(1+sin2x)(1+πsinx)dx(ii)
Adding equation (i) and (ii)
2I=π2π2(1+sin2x)(1+πsinx)(1+πsinx)dx
2I=π2π2(1+sin2x)dx
2I=2π20(1+sin2x)dx
I=π201+1cos2x2dx
I=π20(3212cos2x)dx=[32x14sin2x]π20
I=32(π2)14(sinπ)
I=3π4

flag
Suggest Corrections
thumbs-up
11
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon