The correct option is D 3π4
I=π2∫−π2(1+sin2x1+πsinx)dx⋯(i)
Applying property of definite integrals
b∫af(x)dx=b∫af(a+b−x)dx
I=π2∫−π2(1+sin2x1+π−sinx)dx
I=π2∫−π2πsinx(1+sin2x)(1+πsinx)dx⋯(ii)
Adding equation (i) and (ii)
2I=π2∫−π2(1+sin2x)(1+πsinx)(1+πsinx)dx
2I=π2∫−π2(1+sin2x)dx
2I=2π2∫0(1+sin2x)dx
I=π2∫01+1−cos2x2dx
I=π2∫0(32−12cos2x)dx=[32x−14sin2x]π20
I=32(π2)−14(sinπ)
∴I=3π4