The correct option is B 4π√3tan−1(12)
I=π3∫−π3π+4x32−cos(|x|+π3)⇒I=π3∫−π3π2−cos(|x|+π3)+π3∫−π34x32−cos(|x|+π3)⇒I=2π3∫0π2−cos(|x|+π3)dx+0⎡⎢⎣∵a∫−af(x)dx=0, when f(x) is odd⎤⎥⎦⇒I=2ππ3∫0dx2−cos(x+π3)
Putting x+π3=t⇒dx=dt
⇒I=2π2π3∫π3dt2−cost⇒I=2π2π3∫π3dt2−⎛⎜
⎜⎝1−tan2t21+tan2t2⎞⎟
⎟⎠⇒I=2π2π3∫π3sec2t2dt1+3tan2t2
Taking tant2=u⇒sec2t2dt=2du
⇒I=2π√3∫1√32du3u2+1⇒I=2π×23√3∫1√3duu2+(1√3)2⇒I=4π3×√3⎡⎢
⎢
⎢
⎢⎣tan−1⎛⎜
⎜
⎜
⎜⎝u1√3⎞⎟
⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥⎦√31√3⇒I=4π√3[tan−1(3)−tan−1(1)]⇒I=4π√3tan−1(21+3)∴I=4π√3tan−1(12)