The value of ∫π/2−π/2dxesinx+1 is k., then 2sin(k)=?
Open in App
Solution
Let I=∫π/2−π/2dxesinx+1=∫0−π/2dxesinx+1+∫π/20dxesinx+1 ⇒I=I1+I2 Put x=−y in I1 I=−∫0π/2dye−siny+1+∫π/20dx1+esinx ⇒I=∫π/20esinxdxesinx+1+∫π/20dxesinx+1 =∫π/201dx=[x]π/20=(π/2−0)=π/2 ∴2sinπ2=2