No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
aπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cπ2 Let I=∫π−πcos2x1+axdx ...(1) Using property ∫baf(x)dx=∫baf(a+b−x)dx I=∫π−πcos2(−π+π−x)1+a(−π+π−x)dx=∫π−πaxcos2x1+axdx ...(2) Adding (1) and (2), we get 2I=∫π−πcos2xdx=[12(x+sinxcosx)]π−π=12(π+0+π−0)=π⇒I=π2