The value of ∫(sin3x+cos3x)dx is
(where C is constant of integration)
A
3sinx+3cosx12+sin3x−cos3x12+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3sinx+3cosx4+sin3x−cos3x12+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinx−cosx4+sin3x+cos3x12+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3sinx−3cosx4+sin3x+cos3x12+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D3sinx−3cosx4+sin3x+cos3x12+C Let I=∫(sin3x+cos3x)dx
Using, sin3x=14[3sinx−sin3x],cos3x=14[cos3x+3cosx]
we get, I=14∫(−sin3x+3sinx+cos3x+3cosx)dx=14[cos3x3−3cosx+sin3x3+3sinx]+C=3sinx−3cosx4+sin3x+cos3x12+C