The correct option is D x+log∣∣∣sin(x−π4)∣∣∣+c
√2∫sinxdxsin(x−π4)
=√2∫sinx1√2sinx−1√2cosx
=∫2sinxdxsinx−cosx
=∫sinx−cosxsinx−cosxdx+∫sinx+cosxsinx−cosxdx
=∫1dx+∫sinx+cosxsinx−cosxdx
Put t=sinx−cosx
⇒dt=cosx+sinx
=x+∫dtt
=x+log|t|+c1
=x+log|(sinx−cosx)|+c1
=x+log∣∣∣sin(x−π4)∣∣∣+c where c=c1+log√2
Hence, option 'D' is correct.