1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Piecewise Continuous Functions
The value of ...
Question
The value of
∫
√
2
−
√
2
2
x
7
+
3
x
6
−
10
x
5
−
7
x
3
−
12
x
2
+
x
+
1
x
2
+
2
d
x
is
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−
16
5
√
2
+
π
2
√
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2
∫
√
2
0
3
x
6
−
12
x
2
+
1
x
2
+
2
d
x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−
14
5
√
2
+
π
2
√
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are
B
−
16
5
√
2
+
π
2
√
2
D
2
∫
√
2
0
3
x
6
−
12
x
2
+
1
x
2
+
2
d
x
I
=
∫
√
2
−
√
2
2
x
7
+
3
x
6
−
10
x
5
−
7
x
3
−
12
x
2
+
x
+
1
x
2
+
2
d
x
=
∫
√
2
−
√
2
2
x
7
−
10
x
5
−
7
x
3
+
x
x
2
+
2
d
x
+
∫
√
2
−
√
2
3
x
6
−
12
x
2
+
1
x
2
+
2
d
x
=
0
+
2
∫
√
2
0
3
x
6
−
12
x
2
+
1
x
2
+
2
d
x
=
2
∫
√
2
0
3
x
2
(
x
4
−
4
)
+
1
x
2
+
2
d
x
=
2
∫
√
2
0
(
3
x
2
(
x
2
−
2
)
+
1
x
2
+
2
)
d
x
=
2
∫
√
2
0
(
3
x
4
−
6
x
2
+
1
x
2
+
2
)
d
x
=
2
(
3
x
5
5
−
2
x
3
+
1
√
2
tan
−
1
(
x
2
)
)
√
2
0
=
−
16
5
√
2
+
π
2
√
2
Suggest Corrections
0
Similar questions
Q.
∫
√
2
−
√
2
2
x
7
+
3
x
6
−
10
x
5
−
7
x
3
−
12
x
2
+
x
+
1
x
2
+
2
d
x
=
⋯
Q.
∫
√
2
−
√
2
2
x
7
+
3
x
6
−
10
x
5
−
7
x
3
−
12
x
2
+
x
+
1
x
2
+
2
d
x
equals
Q.
The value of
∫
√
2
−
√
2
2
x
7
+
3
x
6
−
10
x
5
−
7
x
3
−
12
x
2
+
x
+
1
x
2
+
2
d
x
is :
Q.
Evaluate
∫
2
π
−
√
2
2
x
7
+
3
x
6
−
10
x
5
−
7
x
3
−
12
x
2
+
x
+
1
x
2
+
2
d
x
Q.
∫
√
x
2
+
2
x
+
5
dx
is
equal
to