wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of ln3ln2xsinx2sinx2+sin(ln6x2)dx is

A
14ln32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12ln32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ln32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
16ln32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 14ln32
Let I=ln3ln2xsinx2sinx2+sin(ln6x2)dx

Now, substitute ln6x2=t
Thus, when x=ln3,t=ln6ln3=ln2
Also, when x=ln2,t=ln6ln2=ln3
2xdx=dt
Thus, dx=dt2ln6t

Substituting the above values in I, we get

I=ln2ln3ln6tsin(ln6t)sint+sin(ln6t)dt2ln6t

I=12ln2ln3sin(ln6t)sin(ln6t)+sintdt

I=12ln3ln2sin(ln6t)sin(ln6t)+sintdt...............(1)

Now also, baf(x)dx=baf(a+bx)dx
Thus, expression (1) can also be written as,
I=12ln3ln2sin(t)sin(t)+sin(ln6t)dt...............(2)

Adding equations (1) and (2), we get,

2I=12ln3ln21dt
I=14[ln3ln2]=14ln32
Hence, option 'A' is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon