The value of ∫tan32xsec2xdx is equal to:
Let y=∫tan32xsec2xdx
Put t=sec2x⇒t2=sec22x⇒t2−1=sec22x−1
dt=2.sec2xtan2xdx
dx=dt2.sec2xtan2x
Now,
y=∫tan32xsec2x.dt2sec2xtan2x
=12∫tan22xdx
=12∫(sec22x−1)dt
=12∫(t2−1)dt
=12(t33−t)+C
=12(sec32x3−sec2x)+C
=sec32x6−sec2x2+C