The value of ∫xsinxsec3xdx is
∫xsinxsec3xdx=∫xsinx1cos3xdx
=∫xtanx⋅sec2xdx
Put tanx=t⇒sec2xdx=dt
and x=tan−1t
Then, it reduces to
∫tan−1t⋅tdt=t22tan−1t−∫t22(1+t2)dt
=xtan2x2−12t+12tan−1t+c
=x(sec2x−1)2−12tanx+12x+c
=12[xsec2x−tanx]+c