The correct option is B log 2
limn→∞(1n+1+1n+2+1n+3+........+1n+n)=limn→∞∑nk=1(1n+k)
Choose the interval [0,1] and divide in equal parts [k−1n,kn]
limn→∞(∑nk=111+cn△t) where cn=kn and △t=1n be the size of every subinterval
The limit of sum defines by the intergral
limn→∞(∑nk=1f(x)△x)=∫baf(x)dx
So,
∫1011+t=ln(1+1)−ln(1)=ln2