The value of limn→∞(1√4n2−1+1√4n2−4+....+1√4n2−2n) is.
I=limn→∞(1√4n2−1+1√4n2−4+1√4n2−9........1√4n2−n2)=limn→∞n∑r=11√4n2−r2=limn→∞1nn∑r=11√4−r2n2
Here by general method to solve such problems we assume rn=x and 1n=dx
=∫101√4−x2dx=(sin−1(x2))10=sin−1(12)−sin−1(02)=π6−0=π6
Hence, option D is correct.