The correct option is B π4
limn→∞[nn2+12+nn2+22+...+12n]limn→∞[nn2+12+nn2+22+...+nn2+n2]
kth term of the above series is
Tk=nn2+k2
So, [nn2+12+nn2+22+...+12n]=n∑k=1nn2+k2∴limn→∞[nn2+12+nn2+22+...+12n]=limn→∞n∑k=1nn2+k2limn→∞n∑k=1nn2+k2=limn→∞1nn∑k=111+k2n2=∫101x2+1dx=[tan−1x]10=π4