The correct option is A 0
limn→∞[3√(n+1)2−3√(n−1)2]
=limn→∞n2/3[(1+1n)2/3−(1−1n)2/3]
=limn→∞n2/3⎡⎢
⎢⎣⎛⎜
⎜⎝1+23⋅1n+23(23−1)2!1n2⋅⋅⋅⎞⎟
⎟⎠−⎛⎜
⎜⎝1−23⋅1n+23(23−1)2!1n2⋅⋅⋅⎞⎟
⎟⎠⎤⎥
⎥⎦
=limn→∞n2/3[43⋅1n+881⋅1n3+⋅⋅⋅]
=limn→∞[43⋅1n1/3+881⋅1n7/3+⋅⋅⋅]=0
Hence, option 'A' is correct.