The correct option is B 12
Lets assume f(x)=√n2+n+1−[√n2+n+1],
it can also be written as,
f(x)=√(n+12)2+34−⎡⎣√(n+12)2+34⎤⎦
Now,
limn→∞f(x)=limn→∞√(n+12)2+34−⎡⎣√(n+12)2+34⎤⎦
As n→∞,((n+12)2+34)→(n+12)2
⇒limn→∞√(n+12)2+34−⎡⎣√(n+12)2+34⎤⎦=limn→∞√(n+12)2−⎡⎣√(n+12)2⎤⎦
⇒limn→∞(n+12−[n+12])
∵n is an integer,
∴[n+12]=n, where [⋅] denotes the greatest integer function.
⇒limn→∞(n+12−[n+12])=12
Hence option B.