The correct option is
B 1Let
l=limx→0coshx−cosxxsinx [00form]
Now, applying L'Hospital's rule, we get
l=limx→0sinhx+sinxxcosx+sinx [00form]
[∵ddx(coshx)=sinhx]
Again, applying L'Hospital's rule, we get
l=limx→0coshx+cosxx(−sinx)+cosx+cosx
[∵ddx(sinhx)=coshx]
⇒l=limx→0coshx+cosx2cosx−xsinx=cosh(0)+cos(0)2cos(0)−0
=1+12=1 [∵cosh(0)=1andcos(0)=1]
⇒l=1
Alternate Method
Consider,
limx→0coshx−cosxxsinx=limx→0⎡⎢
⎢
⎢⎣ex+e−x2−cosxxsinx⎤⎥
⎥
⎥⎦
=limx→0⎡⎢
⎢
⎢
⎢⎣(1+x22!+x44!+⋯)−(1−x22!+x44!−x66!+⋯)x(x−x33!+x55!−x77!+⋯)⎤⎥
⎥
⎥
⎥⎦
[∵ex+e−x=2(1+x22!+x44!+⋯)cosx=1−x22!+x44!−x66!+⋯andsinx=x−x33!+x55!−x77!+⋯]
=limx→0⎡⎢
⎢
⎢
⎢⎣2(x22!+x66!+⋯)x2(1−x23!+x45!−x67!+⋯)⎤⎥
⎥
⎥
⎥⎦
=limx→0⎡⎢
⎢
⎢
⎢⎣2(12!+x46!+⋯)(1−x23!+x45!−x67!+⋯)⎤⎥
⎥
⎥
⎥⎦
=2(12!+0+0+⋯)(1−0+0+⋯)=2×12=1.