wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of limx0coshxcosxxsinx is

A
13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1
Let l=limx0coshxcosxxsinx [00form]

Now, applying L'Hospital's rule, we get

l=limx0sinhx+sinxxcosx+sinx [00form]

[ddx(coshx)=sinhx]

Again, applying L'Hospital's rule, we get

l=limx0coshx+cosxx(sinx)+cosx+cosx

[ddx(sinhx)=coshx]

l=limx0coshx+cosx2cosxxsinx=cosh(0)+cos(0)2cos(0)0

=1+12=1 [cosh(0)=1andcos(0)=1]

l=1

Alternate Method

Consider,

limx0coshxcosxxsinx=limx0⎢ ⎢ ⎢ex+ex2cosxxsinx⎥ ⎥ ⎥

=limx0⎢ ⎢ ⎢ ⎢(1+x22!+x44!+)(1x22!+x44!x66!+)x(xx33!+x55!x77!+)⎥ ⎥ ⎥ ⎥

[ex+ex=2(1+x22!+x44!+)cosx=1x22!+x44!x66!+andsinx=xx33!+x55!x77!+]

=limx0⎢ ⎢ ⎢ ⎢2(x22!+x66!+)x2(1x23!+x45!x67!+)⎥ ⎥ ⎥ ⎥

=limx0⎢ ⎢ ⎢ ⎢2(12!+x46!+)(1x23!+x45!x67!+)⎥ ⎥ ⎥ ⎥

=2(12!+0+0+)(10+0+)=2×12=1.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon