The correct option is A 0
limx→0ddx∫x20√costdt1−√cosx⇒limx→0√cosx2×2x−01−√cosx⇒limx→02x√cosx21−√cosx[∵00form]UsingHospitalrule⇒limx→0[x12√cosx2]sinx22√cosx⇒limx→04×[x2sinx2√cosx2+√cosx2]sinx√cosx⇒limx→04×[xsinx2√cosx2+√cosx2]sinxx×1√cosxlimx→0[xsinx2√cosx2+√cosx2]1√cosx[∵limx→0sinxx=1]limx→0=4[0+111]=4Ans.