The correct option is C −12
Here, f(x)=log(cos(x))
f′(x)=−tan(x) and f′(0)=0
f′′(x)=−tan2(x)−1 and f′′(0)=−1
f′′′(x)=−2tan(x)(tan2(x)+1) and f′′′(0)=0
f′′′′(x)=−6tan4(x)−8tan2(x) and f′′′′(0)=−2
So,
f(x)≈00!x0+01!x1−12!x2+03!x4−24!x4+........
Therefore,
log(cos(x))≈−12x2−112x4
Divide by x2 on both the sides, we get
log(cos(x))x2=−12−112x2
limx→0log(cos(x))x2=limx→0(−12−112x2)=−12