The correct option is D Doesn't exist
limx→0(tan({x}−1))sin{x}{x}({x}−1)
RHL=limx→0+(tan({x}−1))sin{x}{x}({x}−1)
Since, x→0+⇒[x]→0
⇒{x}→x
So, RHL=limx→0+(tan(x−1))sinxx(x−1)
RHL=tan1
Now, LHL=limx→0−(tan({x}−1))sin{x}{x}({x}−1)
Since, x→0−⇒[x]→−1
⇒{x}→x+1
LHL=limx→0−tanxsin(x+1)(x+1)(x)
=sin1
Since, LHL≠RHL
Hence, limit does not exists.