The correct option is D e2
Let y=(sinxm+cos3xm)2mx
logy=2mxlog(sinxm+cos3xm)
y=e2mxlog(sinxm+cos3xm)
⇒limx→0y=limx→0e2mxlog(sinxm+cos3xm)
=elimx→02mxlog(sinxm+cos3xm)
=elimx→02mlog(sinxm+cos3xm)x
=elimx→02mlog(1+(sinxm+cos3xm−1))x
=elimx→02mlog(1+(sinxm+cos3xm−1))(sinxm+cos3xm−1)(sinxm+cos3xm−1)x
=elimx→02msinxm+cos3xm−1x..............(∵limx→0log(1+x)x=1)
=e2mlimx→0xm⋅sinxmxm−3xm⋅(1−cos3xm)3xmx.......................(∵limx→0sinxx=1&limx→01−cosxx=0)
=e2