The correct option is C −14
limx→1(1−√x(cos−1x)2)⇒limx→11−√x=0,⇒limx→1(cos−1x)2=0limx→1(1−√x(cos−1x)2)=00Nowusingl′hospital′srulelimx→1(1−√x(cos−1x)2)=limx→1⎛⎜⎝d(1−√x)dxd(cos−1x)2dx⎞⎟⎠=limx→11−12√x2cos−1x∗−1√1−x2Nowlimx→11−12√x=1−1/2=1/2Andlimx→1−2cos−1x√1−x2=00Againusingl′hospital′srulelimx→1−2cos−1x√1−x2=limx→1−2d(cos−1x)/dxd(√1−x2)/dx=limx→1−2(−1√1−x2)−2x2√1−x2=limx→1−2x=−2Therefore,limx→11−12√x2cos−1x∗−1√1−x2=1/2−2=−1/4