The value of limx→∞√1+x4+(1+x2)x2 is
We have,
limx→∞√1+x4+(1+x2)x2
Now,
limx→∞√x4(1x4+1)+x2(1x2+1)x2
⇒limx→∞x2[√(1x4+1)+(1x2+1)]x2
⇒limx→∞√(1x4+1)+(1x2+1)
Taking limit and we get,
√(1∞+1)+(1∞+1)
⇒√0+1+(0+1)
⇒1+1
⇒2
Hence, this is the answer.
limx→∞√x2+1−3√x2+14√x4+1−5√x4−1isequalto
the value of limx→∞√1+x4+(1+x2)x2 is