The correct option is C 112
limx→π/2tan2x(√2sin2x+3sinx+4−√sin2x+6sinx+2)
Rationalizing,
=limx→π/2tan2xsin2x−3sinx+2√2sin2x+3sinx+4+√sin2x+6sinx+2
=limx→π/2tan2x(2−sinx)(1−sinx)√2sin2x+3sinx+4+√sin2x+6sinx+2
=limx→π/2tan2x(2−sinx)cos2x(1+sinx)[√2sin2x+3sinx+4+√sin2x+6sinx+2]
=limx→π/2sin2x(2−sinx)(1+sinx)(√2sin2x+3sinx+4+√sin2x+6sinx+2)=112