The correct option is B does not exist
limx→02∫cosx1sin−1(√1−t2)dt2x−sin2x
On applying limx→0, we get 00 form.
Therefore, use L'Hospitals' rule,
limx→02(sin−1√1−cos2 x)(−sin x)2−2 cos 2x
=limx→0−(sin−1|sinx|)sin x2 sin2 x
=limx→0−sin−1|sinx|2 sin x
L.H.L =limx→0−−(−x)2 sin x=12
R. H. L =limx→0+−(x)2 sin x=−12.
L. H. L ≠ R.H.L
∴ limit does not exist.