The correct option is
B 1/6Given,
limx→0(cos(sin(x))−cos(x)x4)
apply L-Hospital's rule
=limx→0(−sin(sin(x))cos(x)+sin(x)4x3)
again apply L-Hospital's rule
=limx→0(−cos2(x)cos(sin(x))+sin(x)sin(sin(x))+cos(x)12x2)
once again apply L-Hospital's rule
=limx→0⎛⎜⎝3sin(2x)cos(sin(x))+2cos3(x)sin(sin(x))+2cos(x)sin(sin(x))−2sin(x)224x⎞⎟⎠
upon simplification, we get,
=limx→0(3sin(2x)cos(sin(x))+2cos3(x)sin(sin(x))+2cos(x)sin(sin(x))−2sin(x)48x)
again applying L-Hospital's rule,
=limx→0⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝3(2cos(2x)cos(sin(x))−sin(sin(x))cos(x)sin(2x))+2(−3cos2(x)sin(x)sin(sin(x))+cos4(x)cos(sin(x)))+2(−sin(x)sin(sin(x))+cos2(x)cos(sin(x)))−2cos(x)48⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
substituting x=0
3(2cos(2⋅0)cos(sin(0))−sin(sin(0))cos(0)sin(2⋅0))+2(−3cos2(0)sin(0)sin(sin(0))+cos4(0)cos(sin(0)))+2(−sin(0)sin(sin(0))+cos2(0)cos(sin(0)))−2cos(0)48
we get,
=16