The value of limx→1(2−x)tan(πx2) is
limx→1(2−x)tanπx2=limx→1{1+(1−x)}tanπx2
=elimx→1(1−x)tanπx2
=elimx→1(1−x)cot(π2−(πx2))
=elimx→1(1−x)tan(π2−πx2)
=e2πlimx→1π2(1−x)tan(π2(1−x))
=e2/π