The value of limx→01+sinx−cosx+log(1−x)x3
The number of values of x∈[0,nπ],n∈I that satisfy log|sinx|(1+cosx)=2 is
You are given cos x=1−x22!+x44!−x66!......;
sin x=x−x33!+x55!−x77!......
tan x=x+x33+2.x515......
Find the value of limx→0x cosx+sinxx2+tanx