No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
14
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D14 limx→11−√x(cos−1x)2 =limx→1(1−√x)(1+√x)(cos−1x)2(1+√x) =limx→1(1−x)(cos−1x)2(1+√x) Let cos−1x=θ Then x=cosθ As x→1⇒θ→0 limθ→01−cosθθ2(1+√cosθ) =limθ→01−cosθθ21(1+√cosθ) =limθ→02sin2θ24θ24(11+√cosθ) =12limθ→0⎛⎜
⎜
⎜⎝sinθ2θ2⎞⎟
⎟
⎟⎠211+√cosθ =14