The value of limy→0(x+y)sec(x+y)−xsecxy is equal to
Given limy→0(x+y)sec(x+y)−xsecxy
=limy→0xsec(x+y)+ysec(x+y)−xsecxy
=limy→0{x{sec(x+y)−secx}y+sec(x+y)}.......taking x as common
=limy→0[xy{cosx−cos(x+y)cos(x+y)cosx}]+limy→0sec(x+y)
=limy→0⎡⎢
⎢
⎢
⎢⎣x2sin(x+y2)sin(y2)ycos(x+y)cosx⎤⎥
⎥
⎥
⎥⎦+secx
=limy→0⎡⎢ ⎢ ⎢ ⎢⎣xsin(x+y2)cos(x+y)cosx×sin(y2)y2⎤⎥ ⎥ ⎥ ⎥⎦+secx
=xtanxsecx+secx
=secx(xtanx+1)