The correct options are
A 1√2
B −1√2
Given,
3x2−2mx−4=0 and x2−4mx+2=0 have a common root.
Let α be the common root.
3α2−2mα−4=0
α2−4mα+2=0
By Cramer's rule,
α2−4m−16m=α−4−6=1−12m+2m
α2−20m=α−10=1−10m
α=2m,α=1m
⇒2m=−1m
⇒m2=12
⇒m=±1√2
Hence, options 'A' and 'B' are correct.