The value of sec2π7sec4π7+sec4π7sec6π7+sec2π7sec6π7 is
As cos2π7,cos4π7,cos6π7 roots of 8x3+4x2−4x−1=0
Then sum of roots
cos2π7+cos4π7+cos6π7=−4
And product of roots
cos2π7.cos4π7.cos6π7=1
Therefore
sec2π7sec4π7+sec4π7sec6π7+sec6π7sec2π7=1cos2π7cos4π7+1cos4π7cos6π7+1cos6π7cos2π7=cos2π7+cos4π7+cos6π7cos2π7.cos4π7.cos6π7=−41=−4