The correct option is
D 1Apply distributing rule
(a+b)3=a3+3a2b+3ab2+b3
a=k2,b=k
=(k2)3+3(k2)2k+3k2k2+k3
Simplify =k6+3k5+3k4+k3
=∑∞k=13k2+3k+1k6+3k5+3k4+k3
For an infinite upper boundary, if an→0,then∑∞n=k(an+1−an)=−ak
3k2+3k+1k6+3k5+3k4+k3=−(1(k+1)3)−(−1k3)
an+1=−(1(k+1)3)an=−1k3ak=a1=−113
limk→∞(−1k3)
limx→a[c⋅f(x)]=c⋅limx→af(x)
=−limk→∞(1k3)
limx→a[f(x)g(x)]=limx→af(x)limx→ag(x),limx→ag(x)≠0
With the exception of indeterminate form
=−limk→∞(1)limk→∞(k3)
limk→∞(1)
limx→ac=c
=1
limk→∞(k3)
{Apply Infinity Property}:
limx→∞(axn+⋯+bx+c)=∞,a>0,nisodd
=1,n=3
=∞
=−1∞
=0
By the telescoping series test : ∑∞k=13k2+3k+1k6+3k5+3k4+k3=−ak
=−(−113)
=1
Option D is correct answer