The value of n−1∑k=1sin2kπn is
n−1∑k=1sin2kπn kth term =tk=1−cos2kπn2 n−1∑k=1tk=12(n−1)−12{cos2πn+cos4πn+...+cos(n−1)2πn} =12(n−1)−12cos{2πn+(n−2)πn}sin(n−1)πnsinπn =12(n−1)−12(−1)1=n2 Hence, option 'A' is correct.