The correct option is C 2(√3−1)
Let S=13∑k=11sin(π4+(k−1)π6)sin(π4+kπ6)
Assuming π4=θ, α=π6
S=13∑k=11sin(θ+kα)sin(θ+(k−1)α)
=1sinα13∑k=1sinαsin(θ+kα)sin(θ+(k−1)α)
=1sinα13∑k=1sin[(θ+kα)−(θ+(k−1)α)]sin(θ+kα)sin(θ+(k−1)α)=1sinπ613∑k=1cot(θ+(k−1)α)−cot(θ+kα)=213∑k=1cot(θ+(k−1)α)−cot(θ+kα)=2[cotθ−cot(θ+13α)]=2[cotπ4−cot(π4+13π6)]=2[1−cot(5π12)]=2[1−cot75∘]=2[1−(2−√3)]=2(√3−1)