The correct option is D 1
6∑k=1(sin2kπ7−cos2kπ7)
=6∑k=1sin2kπ7−6∑k=1cos2kπ7
=6∑k=0sin2kπ7−6∑k=0cos2kπ7+1⋯(1)
We know that, sum of 7th root of unity is zero
∴6∑k=0(cos2kπ7+isin2kπ7)=0
∴6∑k=0(cos2kπ7+isin2kπ7)=0+0⋅i
On comparing, we get
⇒6∑k=0cos2kπ7=0 and
6∑k=0sin2kπ7=0
Therefore, From equation (1)
6∑k=0sin2kπ7−6∑k=0cos2kπ7+1=0−0+1=1