The value of n∑r=2(−2)r∣∣
∣∣n−2Crn−2Cr−1n−2Cr−2−3112−10∣∣
∣∣,(n>2) is
A
2n−1+(−1)n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2n−3+(−1)n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2n+1+(−1)n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2n+3+(−1)n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2n−1+(−1)n Applying, C1→C1+2C2+C3
we get, S=n∑r=2(−2)r∣∣
∣∣nCrn−2Cr−1n−2Cr−20110−10∣∣
∣∣=n∑r=2(−2)r⋅nCr=n∑r=0(−2)r⋅nCr−(nC0−2⋅nC1)=(1−2)n−(1−2n)(∵(1−x)n=n∑r=0(−x)r⋅nCr)=2n−1+(−1)n