The correct option is A 3π−8
Given: 4∑x=0sin−1(sinx)=sin−1(sin0)+sin−1(sin1)+sin−1(sin2)+sin−1(sin3)+sin−1(sin4)
We know, sin−1(sinx)=⎧⎪
⎪⎨⎪
⎪⎩x , −π2≤x≤π2 π−x , π2<x≤3π2
∴ sin−1(sin0)+sin−1(sin1)+sin−1(sin2)+sin−1(sin3)+sin−1(sin4)
=(0)+(1)+(π−2)+(π−3)+(π−4)
=3π−8