The correct option is
C 35The value of
7∑r=1 is
Let a=π16
tan7a=cota since(π2−7π16=π16)
Similarly, we get, tan6a=cot2a
tan5a=cot3a
and 4a=π4tan4a=⊥
therefore given expression reduces to
tan2a+cot2a+tan2(2a)+cot2(2a)+tan2(3a)+ct2(3a)+1
⇒tan2a+cot2a=sina+cos4a/sin2acos2a
=(sin2a+cosa)2−2sin2acos2a
=(1−2sin2acos2a)/sin2acos2a
=1sin2acos2a−2
=(4/4sin2acos2a)−2=4/sin2(2a)−2
In the same way simplify other sums we get ,
4(1/sin2(2a)+1/sin2(4a)+1/sin2(6a))−5
1/sin2(4a)=2
=4(1sin2(2a)+1sin2(6a))+3=8(11−cos4a+11−cos2a)+3
[4a=π/4&12a=3π/4]
this gives =32+3=35 as, option (D) is correct.