The correct option is
A 21Let θ=nπ7
or, 4θ+3θ=nπ
or, tan4θ=tan(nπ−3θ)
or, tan4θ=tan3θ
or, 4tanθ−4tan3θ1−6tan6θ+tan4θ=−3tanθ−tan3θ1−3tan2θ
or, 4z−4z31−6z2+z4=−3z−z31−3z2
or, 4(z−4z2)(1−3z2)=−(3−z2)×(1−6z3+z4)
or, z6−21z4+35z2−7=0---------------------1
This is a cubic equation in z2 i.e. in tan2θ.
The roots of this equation are ∴tan2π7,tan22π7,tan23π7
From Equation 1, sum of roots =−(−21)1=21
∴tan2π7+tan22π7+tan23π7=21