cosec10∘+cosec50∘−cosec70∘
=1sin10∘+1sin50∘−1sin70∘
=2sin50∘sin70∘+2sin10∘sin70∘−2sin10∘sin50∘2sin10∘sin50∘sin70∘
=2sin70∘(sin50∘+sin10∘)−2sin10∘sin50∘2sin10∘sin(60∘−10∘)sin(60∘+10∘)
=2sin70∘(2sin30∘cos20∘)−cos40∘+cos60∘2sin10∘sin(60∘−10∘)sin(60∘+10∘)
=2sin270∘−cos40∘+122sin10∘(sin260∘−sin210∘)
=1−cos140∘−cos40∘+122(3sin10∘−4sin310∘4)
=cos40∘−cos40∘+32sin30∘2
=3214=6