The value of (e2θ-1)(e2θ+1) is
cothθ
coth2θ
tanhθ
tanh2θ
Explanation for the correct option:
Find the required value.
Given: (e2θ-1)(e2θ+1)
(e2θ-1)(e2θ+1)=(eθeθ–1)(eθeθ+1)=eθeθ–1eθeθeθ+1eθ=eθ–e-θeθ+e-θ=tanhθ∵tanhx=ex–e-xex+e-x
Hence, option (C) is the correct answer.