The correct option is C 16
Given f(x)=√(1+x)−(1+x)1/3x
Since,f(x) is continuous at x=0
f(0)=LHL=RHL
RHL=limx→0+f(x)=limh→0f(0+h)
=limh→0(1+h)1/2−(1+h)1/3h
=(1+12h−18h2.....)−(1+h3−19h2+....)h
=(h2−h3)+higherdegreetermsofhh
=limh→0h[(12−13)+higherdegreetermsofh]h
RHL=16+0=16
Hence, f(0)=16