The value of f(0) so that the function f(x)=1−cos(1−cos x)x4 is continuous everywhere is
18
limx→0f(x)=f(0) for continuity.
limx→0f(x)=limx→01−cos (1−cos x)x4
cos x=1−x22!+x44!+.......⇒limx→0f(x)=limx→01−[1−(1−cos x)22!+(1−cos x)44!....]x4(Replacing x by (1−cos x))limx→0f(x)=limx→0(1−cos x)22! x4−(1−cos x)44! x4+....Also, limx→0(1−cos xx2)=12 (∵cos x=1−x22!+x44!+.....)limx→0f(x)=limx→012.((1−cos x)x2)2+124limx→0(x22!−x44!.........)4x4+H.O.T.Slimx→0f(x)=12×limx→0(1−cos xx2)2+0+0+.....limx→0f(x)=12×(12)2=12×14=18