The correct option is A 18
For the function to be continuous, the value of the function at x=0 must be equal to its limit at this point. So,
f(0)=limx→0f(x)=limx→01−cos(1−cosx)x4=limx→01−cos(2sin2x2)x4=limx→02sin2(sin2x2)x4=limx→02sin2(sin2x2)(sin2x2)2⋅sin4x2(x2)4⋅116=18