The value of 1r21+1r22+1r23+1r2 is
0
Since, 1r21=(s−a)2Δ2,1r22=(s−b)2Δ2,1r23=(s−c)2Δ2,and 1r2=s2Δ2∴1r21+1r22+1r23+1r2=s2+(s−a)2+(s−b)2+(s−c)2Δ2=4s2+a2+b2+c2−2s(a+b+c)Δ2=a2+b2+c2Δ2